If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-50x-12600=0
a = 1; b = -50; c = -12600;
Δ = b2-4ac
Δ = -502-4·1·(-12600)
Δ = 52900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{52900}=230$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-230}{2*1}=\frac{-180}{2} =-90 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+230}{2*1}=\frac{280}{2} =140 $
| 38+4x=45.5+2.5 | | 2x-1=106 | | 9/n=8/(2/7) | | -4(-6u+1)-4u=2(u-5)-4 | | 8=u/5.12+4 | | -9v+21=-6(v-5) | | a-68=29 | | X(x+3)=2(x+4)-2 | | x-57=32 | | 34=-8v+6(v+7) | | 4x^2-4+5=x | | 7.45=2.10n+1.15 | | 49+49+2x=180 | | 2x+7=4x−1 | | -12-4=-14d-10 | | 4x−1=2x+7 | | 3x^2+13x=2x+4 | | 5(w-1)-2=5w=7 | | 3a²+a=0 | | -5(u+50)=70 | | 2x-16=2/5x | | -3.36=w/6+12 | | 1/2(-4+6x)=1/3x+2/3x(x+9) | | 1/3(3x-9)=1/2(4x+2)+1/2 | | 3a2+a=0 | | n÷3-1=1 | | -2=-4+2p | | p9=63 | | 9=j/3+5 | | 65.1=7(m+3.9) | | 14+f=48 | | 5=3r-1 |